Question here
Mathblock |
---|
^AR^B_{X' Y' Z'} ( \alpha, \beta, \gamma) = \left[
\begin{array}{ccc}
c \beta c \gamma & - c \beta s \gamma & s \beta \\
s \alpha s \beta c \gamma + c \alpha s \gamma & - s \alpha s \beta s \gamma + c \alpha c \gamma & - s \alpha c \beta \\
- c \alpha s \beta c \gamma + s \alpha s \gamma & c \alpha s \beta s \gamma + s \alpha c \gamma & c \alpha c \beta
\end{array}
\right] |
...
...
...
...
Info |
---|
This problem was contributed by Thomas Uchida at the University of Ottawa. |
Frame A and point lie on the plane :
Image Added
Note that unit vector Mathinline |
---|
body | --uriencoded--z_%7B\mathrm%7BA%7D%7D |
---|
|
is pointing out of the screen. The coordinates of point are (2.1, 0.5, 0) when expressed in frame A. Frame B lies in the same plane and has the orientation shown below:
Image Added
(a) Find the rotation matrix Mathinline |
---|
body | --uriencoded--%7B%7D%5e%7B\mathrm%7BA%7D%7D\!R_%7B\mathrm%7BB%7D%7D |
---|
|
that relates the orientation of frames A and B. Use any strategy to check your answer and explain why it is correct.
(b) For part (b) only, suppose the origins of frames A and B are coincident. Use your answer from part (a) and the expression Mathinline |
---|
body | --uriencoded--p_%7B\mathrm%7BA%7D%7D = %7B%7D%5e%7B\mathrm%7BA%7D%7D\!R_%7B\mathrm%7BB%7D%7D \ p_%7B\mathrm%7BB%7D%7D |
---|
|
to compute Mathinline |
---|
body | --uriencoded--p_%7B\mathrm%7BB%7D%7D |
---|
|
. Recall that rotation matrices are orthogonal, which means that Mathinline |
---|
body | --uriencoded--\left( %7B%7D%5e%7B\mathrm%7BA%7D%7D\!R_%7B\mathrm%7BB%7D%7D \right)%5e%7B-1%7D = \left( %7B%7D%5e%7B\mathrm%7BA%7D%7D\!R_%7B\mathrm%7BB%7D%7D \right)%5e%7B\operatorname%7BT%7D%7D |
---|
|
.
(c) Now suppose the origin of frame B is at Mathinline |
---|
body | --uriencoded--3.7 x_%7B\mathrm%7BA%7D%7D + 1.1 y_%7B\mathrm%7BA%7D%7D + 0 z_%7B\mathrm%7BA%7D%7D |
---|
|
relative to the origin of frame A. What is the transformation matrix Mathinline |
---|
body | --uriencoded--r_%7B11%7D |
---|
|
, %7B%7D%5e%7B\mathrm%7BA%7D%7DT_%7B\mathrm%7BB%7D%7D |
|
that relates frames A and B?
(d) Use your answer from part (c) and the expression below to compute Mathinline |
---|
body | --uriencoded--r_%7B23%7D |
---|
|
, etc.) and clearly state any assumptions that you make:
Mathblock |
---|
|
\begin{Bmatrix}p_{\mathrm{A}}\\1\end{Bmatrix} = {}^{\mathrm{A}}T_{\mathrm{B}} \begin{Bmatrix}p_{\mathrm{B}}\\1\end{Bmatrix} |
(e) Sketch frame A, frame B, and point to confirm that your answer to part (d) is correct.
Expand |
---|
title | Solution (only visible by instructors; please contact us to request access) |
---|
|
Include Page |
---|
| S7.1 Extracting Euler angles from a rotation matrixS7.1 Extracting Euler angles from a rotation matrix3 Introduction to transformation matrices |
---|
| S7.3 Introduction to transformation matrices |
---|
|
|